Seventh Semester B.E. Degree Examination, Feb./Mar.2022 Control Engineering

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. What is a control system? State its ideal requirements.

(08 Marks)

- b. With suitable mathematical expression, explain the following:
 - (i) Proportional-Integral control mode.
 - (ii) Proportional-Derivative control mode

(12 Marks)

OR

- 2 a. With a neat sketch, explain open loop and closed loop control system. Give one "day to day" life example for each. (12 Marks)
 - b. Distinguish between open loop and closed loop control system.

(08 Marks)

Module-2

3 a. Construct equivalent mechanical network and determine transfer function $\frac{X_1(s)}{F(s)}$ for the mechanical system shown in Fig. Q3 (a). (10 Marks)

Fig. Q3 (a)

b. Determine the transfer function $\frac{C(s)}{R(s)}$ for the system shown in Fig. Q3 (b). (10 Marks)

OR 1 of 2

4 a. For the mechanical system shown in Fig. Q4 (a), find the electrical analog based on force-current analogy. (12 Marks)

Fig. Q4 (a)

b. With a neat sketch, obtain transfer function for a pneumatic actuator.

(08 Marks)

Module-3

- 5 a. By using Routh's method comment on stability of system having characteristic equation, $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$ (10 Marks
 - b. Sketch the root locus plot for a closed loop system having an open-loop transfer function,

$$G(s)H(s) = \frac{K(s+2)}{s(s+1)}$$
 (10 Marks)

OR

6 Sketch the compute root-locus plot for the control system given by,

$$G(s) = \frac{K}{s(s+2)(s^2+6s+25)}$$
 (20 Marks)

Module-4

Investigate the closed loop stability of the system using Nyquist stability criterion for openloop system with transfer function,

$$G(s)H(s) = \frac{5}{s(s+1)}$$
 (20 Marks)

OR

8 Draw Bode plot, determine GM, PM, W_{gc}, W_{PC} and comment on stability for a unity feedback control system having,

$$G(s) = \frac{80}{s(s+2)(s+20)}$$
 (20 Marks)

Module-5

- 9 a. Explain (i) Lag-compensator
 - (ii) Lead-compensator

(10 Marks)

b. What is state variable analysis? What are its advantages?

(10 Marks)

OR

- 10 a. Define: (i) State
- (ii) State variables
- (iii) State space

- (iv)State vector
- (v) State trajectory.

- (10 Marks)
- b. Obtain transfer function for a simple thermal system by mathematical modeling approach.
 (10 Marks)